(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Rewrite Strategy: INNERMOST

(1) DependencyGraphProof (BOTH BOUNDS(ID, ID) transformation)

The following rules are not reachable from basic terms in the dependency graph and can be removed:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

sel(0, cons(X, Y)) → X
activate(n__from(X)) → from(activate(X))
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
activate(X) → X
activate(n__s(X)) → s(activate(X))

Rewrite Strategy: INNERMOST

(3) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(4) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

sel(0, cons(X, Y)) → X [1]
activate(n__from(X)) → from(activate(X)) [1]
from(X) → cons(X, n__from(n__s(X))) [1]
from(X) → n__from(X) [1]
s(X) → n__s(X) [1]
activate(X) → X [1]
activate(n__s(X)) → s(activate(X)) [1]

Rewrite Strategy: INNERMOST

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

sel(0, cons(X, Y)) → X [1]
activate(n__from(X)) → from(activate(X)) [1]
from(X) → cons(X, n__from(n__s(X))) [1]
from(X) → n__from(X) [1]
s(X) → n__s(X) [1]
activate(X) → X [1]
activate(n__s(X)) → s(activate(X)) [1]

The TRS has the following type information:
sel :: 0 → cons:n__from:n__s → cons:n__from:n__s
0 :: 0
cons :: cons:n__from:n__s → cons:n__from:n__s → cons:n__from:n__s
activate :: cons:n__from:n__s → cons:n__from:n__s
n__from :: cons:n__from:n__s → cons:n__from:n__s
from :: cons:n__from:n__s → cons:n__from:n__s
n__s :: cons:n__from:n__s → cons:n__from:n__s
s :: cons:n__from:n__s → cons:n__from:n__s

Rewrite Strategy: INNERMOST

(7) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:


sel

(c) The following functions are completely defined:

activate
from
s

Due to the following rules being added:
none

And the following fresh constants:

const

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

sel(0, cons(X, Y)) → X [1]
activate(n__from(X)) → from(activate(X)) [1]
from(X) → cons(X, n__from(n__s(X))) [1]
from(X) → n__from(X) [1]
s(X) → n__s(X) [1]
activate(X) → X [1]
activate(n__s(X)) → s(activate(X)) [1]

The TRS has the following type information:
sel :: 0 → cons:n__from:n__s → cons:n__from:n__s
0 :: 0
cons :: cons:n__from:n__s → cons:n__from:n__s → cons:n__from:n__s
activate :: cons:n__from:n__s → cons:n__from:n__s
n__from :: cons:n__from:n__s → cons:n__from:n__s
from :: cons:n__from:n__s → cons:n__from:n__s
n__s :: cons:n__from:n__s → cons:n__from:n__s
s :: cons:n__from:n__s → cons:n__from:n__s
const :: cons:n__from:n__s

Rewrite Strategy: INNERMOST

(9) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(10) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

sel(0, cons(X, Y)) → X [1]
activate(n__from(n__from(X'))) → from(from(activate(X'))) [2]
activate(n__from(X)) → from(X) [2]
activate(n__from(n__s(X''))) → from(s(activate(X''))) [2]
from(X) → cons(X, n__from(n__s(X))) [1]
from(X) → n__from(X) [1]
s(X) → n__s(X) [1]
activate(X) → X [1]
activate(n__s(n__from(X1))) → s(from(activate(X1))) [2]
activate(n__s(X)) → s(X) [2]
activate(n__s(n__s(X2))) → s(s(activate(X2))) [2]

The TRS has the following type information:
sel :: 0 → cons:n__from:n__s → cons:n__from:n__s
0 :: 0
cons :: cons:n__from:n__s → cons:n__from:n__s → cons:n__from:n__s
activate :: cons:n__from:n__s → cons:n__from:n__s
n__from :: cons:n__from:n__s → cons:n__from:n__s
from :: cons:n__from:n__s → cons:n__from:n__s
n__s :: cons:n__from:n__s → cons:n__from:n__s
s :: cons:n__from:n__s → cons:n__from:n__s
const :: cons:n__from:n__s

Rewrite Strategy: INNERMOST

(11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

0 => 0
const => 0

(12) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 2 }→ s(X) :|: z = 1 + X, X >= 0
activate(z) -{ 2 }→ s(s(activate(X2))) :|: z = 1 + (1 + X2), X2 >= 0
activate(z) -{ 2 }→ s(from(activate(X1))) :|: X1 >= 0, z = 1 + (1 + X1)
activate(z) -{ 2 }→ from(X) :|: z = 1 + X, X >= 0
activate(z) -{ 2 }→ from(s(activate(X''))) :|: z = 1 + (1 + X''), X'' >= 0
activate(z) -{ 2 }→ from(from(activate(X'))) :|: X' >= 0, z = 1 + (1 + X')
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
s(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

(13) InliningProof (UPPER BOUND(ID) transformation)

Inlined the following terminating rules on right-hand sides where appropriate:

from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
s(z) -{ 1 }→ 1 + X :|: X >= 0, z = X

(14) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 2 }→ s(s(activate(X2))) :|: z = 1 + (1 + X2), X2 >= 0
activate(z) -{ 2 }→ s(from(activate(X1))) :|: X1 >= 0, z = 1 + (1 + X1)
activate(z) -{ 2 }→ from(s(activate(X''))) :|: z = 1 + (1 + X''), X'' >= 0
activate(z) -{ 2 }→ from(from(activate(X'))) :|: X' >= 0, z = 1 + (1 + X')
activate(z) -{ 3 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X'
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
s(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

(15) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(16) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

(17) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ from }
{ sel }
{ s }
{ activate }

(18) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {from}, {sel}, {s}, {activate}

(19) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: from
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 3 + 2·z

(20) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {from}, {sel}, {s}, {activate}
Previous analysis results are:
from: runtime: ?, size: O(n1) [3 + 2·z]

(21) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: from
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(22) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {sel}, {s}, {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]

(23) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(24) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {sel}, {s}, {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]

(25) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: sel
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z'

(26) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {sel}, {s}, {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
sel: runtime: ?, size: O(n1) [z']

(27) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: sel
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(28) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {s}, {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
sel: runtime: O(1) [1], size: O(n1) [z']

(29) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(30) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {s}, {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
sel: runtime: O(1) [1], size: O(n1) [z']

(31) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: s
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z

(32) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {s}, {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
sel: runtime: O(1) [1], size: O(n1) [z']
s: runtime: ?, size: O(n1) [1 + z]

(33) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: s
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(34) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
sel: runtime: O(1) [1], size: O(n1) [z']
s: runtime: O(1) [1], size: O(n1) [1 + z]

(35) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(36) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
sel: runtime: O(1) [1], size: O(n1) [z']
s: runtime: O(1) [1], size: O(n1) [1 + z]

(37) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: activate
after applying outer abstraction to obtain an ITS,
resulting in: EXP with polynomial bound: ?

(38) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed: {activate}
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
sel: runtime: O(1) [1], size: O(n1) [z']
s: runtime: O(1) [1], size: O(n1) [1 + z]
activate: runtime: ?, size: EXP

(39) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: activate
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 4 + 4·z

(40) Obligation:

Complexity RNTS consisting of the following rules:

activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ s(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ s(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(s(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ from(from(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
s(z) -{ 1 }→ 1 + z :|: z >= 0
sel(z, z') -{ 1 }→ X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0

Function symbols to be analyzed:
Previous analysis results are:
from: runtime: O(1) [1], size: O(n1) [3 + 2·z]
sel: runtime: O(1) [1], size: O(n1) [z']
s: runtime: O(1) [1], size: O(n1) [1 + z]
activate: runtime: O(n1) [4 + 4·z], size: EXP

(41) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(42) BOUNDS(1, n^1)